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The finite difference Galerkin (FDG) method is extended to time dependent incompressible 
Navier-Stokes equations. Two algorithm development examples are given that use a staggered 
grid and centered differencing scheme for the primitive variables. Mass balance is used to 
solve the essential problems associated with applying the FDG method. The use of the FDG 
method with this underlying discretization is shows to be the discrete analog of the continuum 
manipulations that lead to the fourth-order streamfunction equation. Asymptotic and time 
evolution results obtained with a Crank-Nicolson Adams-Basforth algorithm are compared 
with published computations for Re 400, 1000, and 3200. 0 1989 Academic press, IX. 

1. INTRODUCTION 

This paper is concerned with the development of finite difference algorithms for 
unsteady incompressible Navier-Stokes equations. The momentum and continuity 
equations for incompressible flows cannot be directly integrated in time because the 
continuity equation is not given in a time evolution form. In primitive variable for- 
mulations one approach has been to use a fractional time step method. The inter- 
mediate step introduces a velocity solution to the momentum equations without the 
pressure gradient, and then the pressure and velocity fields are successively 
corrected until the continuity equation is satisfied. The successive correction of 
pressure and velocity is equivalent to projecting the intermediate velocity solution 
onto the subspace of discretely divergence free velocity fields. This general approach 
was developed by Chorin [3], and a specific example is given in Kim and Moin 
[ 111. Another general method for solving incompressible flow problems in 
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primitive variables is to directly couple the momentum and continuity equations. 
Moin and Kim [13] use direct coupling by simultaneously solving the momentum 
and continuity equations for velocity and pressure. Indirect coupling is used in the 
pressure Poisson method introduced for two dimensions by Harlow and Welch [9] 
and extended to three dimensions by Williams [22]. This approach combines the 
divergence of the momentum equation with the continuity equation to obtain a 
Poisson equation for the pressure. A third general approach that has been widely 
used in two dimensions is the streamfunction and vorticity formulation, as in 
Fromm [4] and Roache [16]. The vorticity transport equation is obtained by 
taking the curl of the momentum equation, and this eliminates the pressure 
gradient. The velocity solution is obtained from the stream function so that it 
automatically satisfies the continuity equation. Particular difficulties with this 
method have been caused by the vorticity boundary conditions, and by the 
coupling between the vorticity and the streamfunction along the boundaries. 

Weak forms of the incompressible Navier-Stokes equations can be formulated 
without the pressure gradient and the continuity equation. Incompressibility is 
obtained by restricting the function space of velocity solutions, and the continuity 
equation is viewed as a constraint for defining the solution space. This approach is 
useful both for the analysis of the Navier-Stokes equations (Ladyzhenskaya [ 12]), 
and for the development of numerical algorithms (Temam [20]). A numerical 
algorithm is generally developed after manipulating the partial differential 
equations and their solution spaces. In the context of Galerkin ideas, Stephens, Bell, 
Solomon, and Hackerman [19] use their finite difference Galerkin (FDG) method 
for the numerical solution of steady incompressible equations. They begin with a 
discretization of the primitive variable equations, and then they manipulate the 
finite difference equations and their solution spaces to obtain a convenient 
algorithm. The essential features of the FDG method are the expansion of the 
discrete velocity solution using a basis for the discretely divergence free vector fields 
on the grid and derivation of equations for the expansion coefficients by taking the 
inner product of the expansion vectors and the discrete momentum equations. The 
only exceptional constraint is that the primitive variable discretization for the 
divergence operator in the continuity equation must be the adjoint (matrix trans- 
pose) of the discretization for the gradient operator applied to the pressure in the 
momentum equations. If the discrete divergence and gradient operators are the 
adjoints of each other, then the discrete pressure gradient will drop out of the 
derived equations. The FDG method applies in two or three dimensions and may 
be used with any primitive variable discretization that is chosen by the user. The 
essential problems in applying the FDG method are to find a basis for the nullspace 
of the discrete divergence operator and to find a particular solution of the discrete 
continuity equation that accounts for the velocity boundary values that are 
prescribed by the problem that is being solved. The FDG method is equivalent to 
the dual variable (DV) method of Amit, Hall, and Porsching [ 11. The DV method 
has been used for practical problems with steady and unsteady flows and has been 
extended to both compressible flows and the finite element method (see Hall [S]). 
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The DV method also starts with a primitive variable discretization and is essentially 
a variable reduction method using network theory algorithms as a systematic 
method for obtaining a basis of nullvectors for the discrete divergence operator and 
for obtaining a particular solution to the continuity equation that assumes any 
boundary values prescribed for the flow. A similar variable reduction method has 
been used in the solution of nonlinear electrical network problems (see Rheinbolt 
[lS]). Both Amit et al. [l] and Stephens et al. [19] have suggested that in two 
dimensions it is possible to relate the dual variables or expansion coefficients to a 
discrete streamfunction. 

We begin this paper in Section 2 by presenting a general extension of the FDG 
method used by Stephens et al. [19] to unsteady incompressible flows. A con- 
tinuous time treatment is used for this presentation, since specific algorithms may 
be developed with any time discretization. This general formulation is valid in two 
or three space dimensions and provides a discretely divergence free velocity solution 
without requiring a pressure solution. The presentation of the general method is 
more theoretical than the rest of the paper, and readers are urged to begin with 
Section 3 if they are more interested in the details of implementing this method. An 
example of the general method for developing algorithms is given a detailed treat- 
ment in Section 3. The primitive variable discretization used by the method in 
Section 3 is on a staggered MAC grid with central differencing, and we show how 
discrete mass balance can be used to solve the essential problems associated with 
applying the FDG method. The driven cavity problem is used as a simple example. 
In Section 4 we show in detail that the resulting FDG expansion variables may be 
directly interpreted as a discrete streamfunction and that our choices of primitive 
variable discretization and expansion vectors in the FDG method are equivalent to 
formulating an algorithm for the time dependent fourth-order streamfunction 
equation. This method of algorithm development can use a staggered grid and mass 
balance for a primitive variable formulation, with the FDG method leading to a 
reduction of variables in the derived streamfunction formulation, while the discrete 
streamfunction interpretation of the derived variables yields a primitive variable 
solution that is discretely divergence free with all velocity components defined at 
the same point. Section 5 contains a discussion of how mass balance may be used 
to adapt the general method to problems in two dimensions with throughflow and 
with obstacles in the flow field. Section 6 presents numerical results using an 
algorithm developed in Section 3, with comparisons to published computations. 
Results are reported for the asymptotic steady state flow in a driven cavity at 
Re = 400, 1000, and 3200. Results are also shown for the unsteady vortex dynamics 
at Re = 1000 in driven cavities with aspect ratios 1 and 2, including the dramatic 
evolution of secondary vortices from bubble recirculations starting on the 
downstream wall. 



210 GOODRICH AND SOH 

2. THE FINITE DIFFERENCE GALERKIN METHOD 
FOR UNSTEADY VISCOUS INCOMPRESSIBLE FLOWS 

Let Q be a bounded open region in R2 or R3, with boundary aQ. The dimen- 
sionless incompressible Navier-Stokes equations in Q are 

~+V(UU)-~~U= -Vp+F, for x in Sz and t>O, (la) 

v.u=o, for x in Q and t > 0, (lb) 

u(x, 0) = 4x1, for x in Q at t = 0, (lc) 

N-NW [)I = Wx, t), for xinaQandt>O, (Id) 

where u is the velocity, p is the scaled pressure, Re is the Reynolds number, F is 
the volume force per unit mass, and B is the operator that defines the boundary 
conditions. If u =B[u] = b in &2, then the boundary data must satisfy the 
constraint 

I b(x, t) .q(x) ds = 0, for t>O, (le) 
a2 

with 11 as the outer normal to the boundary X2. The convenience of known velocity 
values on the boundary is usually absent from practical problems. In common 
applications at least part of the boundary is artitically imposed in the flow in order 
to restrict the domain of the computation, and the artilical boundary algorithms 
may not correspond to the usual boundary conditions that are treated theoretically. 
In order to accomodate problems like this, let %2, and aQ2 be disjoint with 
&2 = 852, v X9,, where u is specified on &2, and unspecified on 852,. Weaker forms 
of the equations for incompressible flow can be derived by starting with the L2 
inner product equation 

d 

ZR I 
u.vdv+ 

j[ 
(2) 

n 
V(uu)-$tu 1 .vdo= j [-Vp+F].vdu, 

a 

for t in (0, ZJ, where v is an arbitrary member of a suitably chosen space of 
divergence free functions defined in Q, and where T > 0 is a fixed time. Seeking a 
solution by using equations and algorithms derived from (2) can separate the 
problem of finding the velocity u from that of finding the pressure p. If the test func- 
tion v in Eq. (2) satisfies V . v = 0 in Q and v(x) = 0 in dQ, then the pressure term 
is eliminated from (2) by Gauss’ Theorem. The usual Galerkin method makes a 
choice of function spaces for the solution u and test functions v which will ensure 
both that the pressure does not appear in the weak equations derived from (2), and 
that the solution is incompressible. 

The FDG method is very similar to standard applications of the Galerkin 
method with a few important differences. The most important difference is that 
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standard Galerkin methods begin with weak continuous equations like (2), while 
the FDG method begins with a primitive variable finite difference approximation of 
(lak( Id). This difference amounts to a choice of where to stop manipulating the 
continuum problem, and of where to begin manipulating its discrete approximation. 
The point where discretization begins naturally implies that there will be differences 
in the function spaces for admissible solutions and trial functions. For a typical 
application of the Galerkin method in developing a finite element algorithm, the 
function spaces consist of piecewise smooth functions that give a solution which is 
defined for every point in the domain Q. The function spaces for the FDG method 
are defined on the discrete points of the computational grid. The spaces of solution 
and trial functions for applications of the Galerkin method are typically constrained 
by boundary conditions from the partial differential equations. The FDG method 
incorporates the boundary conditions in the primitive variable discretization of the 
momentum equations, and obtains the constraint for the solution and trial function 
spaces from the discrete continuity equation. The nullvectors for the discrete 
divergence operator are used as a basis for the trial function space, and any 
prescribed boundary values are assumed by a specific solution of the continuity 
equations. As in standard applications of the Galerkin method, the solution of the 
discrete momentum equations is expanded in terms of these basis vectors, and 
equations for the expansion coefficients are obtained from the inner product 
between these nullvectors and the discrete momentum equations. In order to apply, 
the FDG method, the discretization of the gradient operator for the pressure in the 
momentum equations must be the adjoint (i.e., transpose) of the discretization of 
the divergence operator in the continuity equation. Stephens et al. [19] have 
already applied the Galerkin method in this way to steady viscous incompressible 
flow. 

In order to apply the Galerkin ideas we must introduce a discrete grid and spaces 
of scalar and vector valued functions defined on the grid, and we must introduce 
a spatial discretization of equations (la)-( Id). A finite difference grid denoted by G, 
will be introduced in Q u aQ,, and the grid in CX2, will be denoted by BG,,, where 
h is an indicator of the mesh size. The set of all possible vector and scalar valued 
functions on G, u BG, will be denoted by V, and F,,, respectively. Denote an 
element of V, by fi, and let II Vi and II, be index sets for the scalar components 
of I/, defined on G,, and BGh, respectively. If fi E Vh then ti = { ui: iE Ivi u Ivb}, 
where ui are the discrete scalar components of ti, and not the discrete vector field 
elements of Vh. The discrete velocity components indexed by Ivi and defined on G,, 
are not determined by prescribed boundary data, while the components on BG,, 
indexed by I, are determined by boundary data. For a staggered grid some of the 
velocity components in cells along the boundary may be defined as boundary data 
on BG,,, while other components in the same cells must be found as part of the 
solution on G,. Denote an element of Fh by 8, and let I, and IFb be index sets for 
the components of Fh defined on the grids G, and BG,, respectively. If p E F,, then 
j7= {pi: ieI,uI,}. 0 n a staggered grid it may be appropriate to define Fh on 
just G,, and not on BG,, and the physical location in the grid cells of Fh values may 
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be different from the locations of any of the velocity components. Define an inner 
product on V,, by 

(ii, F)= c z4jvj, (3) 
icl,,,uIvb 

for fi and i in V,,, and define an inner product on F,, by 

for p and 4 in Fk. The discrete inner product (ii, i) is just the component by com- 
ponent product across the entire discrete vector field. Let di and gr represent dis- 
crete divergence and gradient operators, where di is an operator from Vh to Fh and 
gr is an operator from F,, to Vh. Let the discretely divergence free subspace of Vh 
be D, = {iI E V, : di(fi) = O}. Let 0: be the subspace of D,, with zero values in BG,. 
Let na(fi) be a discrete nonlinear operator defined on V,, that approximates the 
continuous terms V. (uu) - (l/Re) Au from (la), and that includes an approxima- 
tion of the boundary operator B on XJ,, where u is not specified. Let T be a discrete 
approximation of the volume forces F from (la), where f may just be a constant 
vector in Vh. With this notation a continuous time discretization of Eqs. (la)+ Id) 
may be written as 

aa 
at+ na(fI) = -gr(P) +T, for t>O, (da) 

for the unknown discretely divergent free velocity solution as a function of time 

ii(t): [0, T] H D,, (4b) 

and for the discrete pressure solution P(t): [0, T] H F,, as a function of time, with 

ii(O) = 1, in G, at t = 0, (4cl 

ii(t)=&,), in BG,, for t > 0, (4d) 

where i and b(t) are mesh functions on G, and BG,, 0 (0, T] that discretize a in Q 
from (lc) and b in aQ, from (ld), respectively. Equations (4a)-(4d) are a coupled 
first-order system of nonlinear ODE for the unknown velocity components 
{ui(t): i~1,~) of th e d iscrete solution ii(t) for t E (0, T]. Note that the divergence 
free constraint no longer appears since it has been incorporated in the definition 
(4b) of the function space for the solution, and that the boundary operator B on 
dQ, no longer appears since it has been incorporated in the space discretization. 
Note also that at this point we could discretize in time before proceeding with the 
discrete Galerkin formulation. We will continue with a continuous time and discrete 
space formulation because of the similarity with a general pattern of use for 
the Galerkin method, and because this approach will also easily lend itself to the 
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formulation of a variety of time discretizations after the FDG method has been 
applied to the space discretization. 

We will now proceed with the discrete Galerkin formulation for the time 
dependent case, based upon the primitive variable continuous time discrete space 
formulation (4a)-(4d). The solution vector C(t): [0, ZJ H D,, of (4a)-(4d) may be 
written as a(t) = *Jt) + k,,(t), where G,(t) : [0, T] H D, is discretely divergence 
free with i+,(t) = 6(t) in BG, for t > 0, and where EG,(t) is an undetermined element 
of 0: for 0 -C t < T. The role of wP(t) is to reduce the computational problem to 
finding the discretely divergence free solution 3,Jt) with homogeneous boundary 
data in 0:. The particular solution G,(t) is introduced in order to handle the 
prescribed boundary values, and in order to simplify finding a basis for the discretely 
divergent free subspace 0: which contains 3,(t). In the next section a detailed 
example is given of 0: for a specific problem, and of how to find a basis for 0: 
using mass balance. A detailed discussion of 0: and its basis for general problems 
is given in Section 5. For the general situation under discussion, let the dimension 
of 0: be d = dim(Di), and let {e,} ;‘= 1 be a basis for 0:. Since { E,}y= 1 is a basis for 
Di, there exists unknown real valued functions (z,(t) : [0, T] H RI;‘= r, such that 
G,,(t) = Cf= 1 zr(t) e,. There is an equation in the system (4a) for each undetermined 
discrete velocity component defined on the grid, or for each separate index i E I Vi, 
and the expansion vectors {C,}p= 1 of 0: have nonzero components only on the grid 
G,,, or for each index ie I,i. If the separate scalar equations in (4a) are ordered 
consistently with the order of the unknown interior velocity components 
(u,:ie I,,}, then the inner product between the vector equation (4a) and the 
expansion vectors may be computed as in (3). If di and gr are adjoints of each other 
in the sense that for all ii E V, and for all p E Fh with dfi = 0 in BG,, 

(WC), d> = (k gr(P)), (5) 

then for L = 1, . . . . d we have 

(CL, grtd))= (di(S,), P> = (6 P> =O, 

since ELc DE so that di(2,) = 0. If (5) is satisfied, then a discrete solution to the 
Navier-Stokes equations on the given mesh may be obtained by solving the system 
of nonlinear ODE, 

,& E,,E,)~+(E,,$*,(I))=(E,,f-na(*,(t)+~~z,L,)), (6a) 

for L = 1 , . . . . d, where the discretely divergence free GP(t) E D, is assumed to be 
known and to satisfy G,(t) = b(l) on BG,,.. The initial data for {z,(t)}~= 1 is obtained 
from 

P = ii&JO) + i; z,(O) E,, 
I= I 

t6b) 
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and the final velocity solution is obtained as 

ii(t) = i-i,(t) + t Z[(f) E,. (6~) 
/= 1 

Equation (6a) is a discrete analog of (2). Note that if (5) is satisfied, then the 
pressure terms have dropped out of (6a). Note also that there is no reference to the 
space dimension in the derivation that leads up to (6a)-(6c), so that the FDG 
method may be applied in two or three space dimensions. The discrete divergence 
equation no longer explicitly appears, but it can still play a role in finding the 
particular solution w,(t) that satisfies c,(t) = b(f) on BG,,. Let us write tip(t) = 
si(t) + %Jt), where *i(t) and %Jt) are zero valued on BG,, and G,,, respectively. 
Let A be a matrix representation of di restricted to elements in Vh that are zero on 
BG,,. Since G,(t) ED,, 0 = di(+,) = di(Gj + gb) = AGi + di(ik,). We know i%, from 
the boundary data 6, so that we can find ti, from the underdetermined linear system 
AGi = - di(ti*). 

The continuous time algorithm in Eqs. (6at(6c) may be solved or approximated 
in any manner that is convenient. We shall introduce two examples of discretization 
in time. For a two time level discretization we may use the general form 

,f, @,, zr,) z;‘;; z; + FL, yf’ -q, 

=fl(f.,,-na(sa+‘+~,z~“E,)) 

+(I--8)(E,,f-na(cf+j,z;E,)). (7) 

for L = 1, . . . . d, where 0~ t3< 1. For the second time discretization we must write 
na(ti) = cv(fi) -df(ii), where cv(ii) and df(l) are discrete operators defined on V, 
that approximate the continuous terms V. (uu) and (l/Re) du in (la). We may 
write a Crank-Nicolson Adams-Bashforth time discretized scheme as 

[iI (S,, c,) 4’;; z; + WL, “T; - f+;, 

=(f~$df(j,z;+‘~,+*,+l)+df(j,z;E,+*,)]) 

for L = 1, . . . . d. Note that the specific formulations resulting in algorithms (7) and 
(8) could also have been obtained by first discretizing in time as well as in space, 
and then using the discrete Galerkin expansion and derivation of equations for the 
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expansion coefficients. The general formulation in (6a)-(6c), and the two time 
discretizations in (7) and (8) are very abstractly stated and are the end result of 
applying the FDG method to the continuous time formulation (4a)-(4d). The FDG 
method manipulates the spatial discretization in order to reduce the computational 
effort required to obtain a solution, and is essentially independent from the time 
discretization. The point of the FDG method is to reduce the computational 
problem at the n th time step from finding 6” and jY to that of finding {z;};‘= 1. An 
example of the specific details required to actually implement this abstract and 
general algorithm is given in Section 3. Section 4 discusses the interpretation of the 
coefficients (z;} y=, , and Section 5 discusses the details required for general 
problems. 

3. ALGORITHMS ON A TWO-DIMENSIONAL STAGGERED GRID 

In this section we will use the general FDG method to develop an algorithm 
specifically for the time dependent driven cavity problem in two space variables. 
The flow is normalized on a 1 x 1 square with zero initial flow and with an 
impulsively started lid moving to the right with unit velocity. This problem is 
illustrated in Fig. la. We will not include the volume force F in Eq. (la). The 
velocity will be denoted by u(x, t) = (u(x, y, t), u(x, y, 2)). The initial data in equa- 
tion (lc) is a(x) = 0, and the boundary data in Eq. (Id) is b(x, t) = 0 everywhere on 
the boundary except for b(x, 1, t) = (l,O). The flow field variables will be defined on 
a staggered uniform grid with Ax = Ay = h. The interior mesh cells will be indexed 
in the x direction by i for 1 < i < 1, and in the y direction by j for 1 <j < J. A typical 
cell with positions for the variables is given in Fig. lb. A velocity component 
defined on a cell face will be interpreted as a velocity average over the face. 

The application of the FDG method to a continuous time discretization (4a) is 
useful theoretically, but for the practical development of an algorithm it is easier to 
apply the FDG method to a primitive variable discretization in both time and 

“4 - the lid velocity uO 

FIG. 1. (a) The driven cavity problem. (b) The (& j) cell with variable locations. 
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space, and this is how we will proceed. For second-order time and space accuracy 
we will use a Crank-Nicolson time discretization and a centered space discretiza- 
tion for all primitive variable terms in Eq. (la). We will follow Harlow and Welch 
[9] and Welch et al. [21] in the treatment of central space differencing on the 
staggered grid. The discretized momentum equation (la) without the body force 
can be written as 

-n+1 
U -ii” 1 

At 
+ 5 (na(iV+ ‘) + ATjT”+ ’ + na(ii”) + A’j7’) = 0, (9) 

where fi” and jY’ are the discrete velocity and pressure solutions at time t,, and 
where na(iP) and ATjY” are the space discretizations for the continuous terms 
V. (uu) - (l/Re) Au and Vp at time t,. Note that AT is a matrix and that na is a 
nonlinear operator. Note also that centered differences are used for discretizing all 
of the space derivatives. This discretization applies directly to the equations in the 
interior cells but must be modified next to the boundaries to accomodate the 
boundary conditions. The finite difference approximations for the nonlinear 
derivatives are not effected next to the boundaries since the discrete forms compute 
the product of a tangential velocity component in an exterior cell with zero 
boundary values of the normal velocity component. The only term that is actually 
effected is for diffusion normal to the boundary, and we will use the standard 
procedure for staggered grids by defining an exterior cell velocity with the aid of the 
boundary conditions. Note that the only inhomogeneous boundary data is the lid 
velocity which is incorporated in the expression for (l/Re) a2u/8y2 in cells next to 
the lid. Since the lid velocity is tangential to the cavity, it does not appear in cell 
centered divergence calculations. Consequently, this known boundary data may be 
incorparated as a source term in the discrete primitive variable momentum 
equations, the tangential velocity values on the boundary may be excluded from the 
discrete velocity field for the computational problem, and the continuity equations 
will be homogeneous. The discrete incompressible velocity solutions that we 
consider for this example will therefore be in the subspace 0: of discrete divergence 
operator nullvectors that have zero boundary values, and the vector of discrete 
velocity components will only need to include those components defined at 
positions inside the cavity. The components will be ordered by cell across the mesh 
and ordered within cells as u then u. If we let ti be a discrete velocity vector defined 
on the interior mesh faces, then the transpose of G is 

since the u values for cells with i = 0 or i = I and 1 d j 6 J represent zero boundary 
velocities across the upstream and downstream walls, while the v values for cells 
with j = 0 or j= J and 1 < i Q I represent zero boundary velocities across the 
bottom wall and the upper lid. The pressure is defined at the center of each indexed 
cell on the interior mesh, so the transpose of the vector of discrete pressure values 
may be represented as 

jj’ = (PI, I, p2, 1 3 ...Y P,, J). 
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For this staggered grid there are Mi = Z(J - 1) + (I- 1 )J = 215 - I - J components 
in I, and mi = ZJ components in ZI. 

We may interpret the continuity or divergence free constraint as the requirement 
that there is no net flow across the boundary of each cell at every discrete time. The 
appropriate discretization in the (i, j) cell at time t, is 

q.-ql. v~.-v~.~l 

Ax 
‘l+ J 

AY 
J =o. (10) 

Along the two side walls and the bottom there is an obvious modification of this 
constraint. For cells next to the upper lid, the v velocity on the upper cell face is 
zero, and this is the velocity on that face which must be used in the divergence 
constraint (10) next to the upper lid. The lid velocity u = (1,0) is tangential to the 
lid and does not contribute to the mass balance for a boundary cell next to the lid. 
The linear system representing (10) on the entire mesh may therefore be written at 
each discrete time t, as the matrix equation 

Ai” = 0, (11) 

where for this problem the matrix A is a discretization of di on the interior mesh. 
Since (10) applies to each cell, (11) represents ZJ equations in 2ZJ- I- J velocity 
components, so that A is an ZJ x (2ZJ- I- J) matrix. There is a discrete evolution 
equation in (9) for each unknown velocity component, so that (9) represents 
215 - I- J equations. Since p”’ is a vector with ZJ components, the discrete gradient 
operator gr used on d”’ must have a (2ZJ- Z-J) x ZJ matrix representation. The 
matrix dimensions for the discrete representations of the divergence and gradient 
operators are consistent with each being the transpose of the other, and the 
discretizations have been chosen to ensure that this is true with the matrix AT 
representing the discrete gradient operator gr. Because there is no flow normal to 
the boundary, the discrete analog of Gauss’ theorem implies that the rows of A add 
to zero, and system (11) is underdetermined. There is at least one redundant 
equation, so that the dimension of the nullspace 0: of A is 

d= dim(Null[A]) < (2ZJ- I- J) - ZJ+ 1 = (I- l)(J- 1). 

To find typical nullvectors for A consider the flows in Figs. (2a)-(2b). Each of these 
flows go through four cells around their common corner at the intersection of the 
two grid lines between the cells, with an equal flow across each of the faces between 
adjacentcells.IfZ=i+(j-1)(Z-1)for1~i~Z-1and1~j~J-1,thenthereis 
a nullvector E, like this associated with the grid intersection at the upper right-hand 
corner of the (i, j) cell. If cxi, j and cyi, j are the components of i!, that correspond 
to uLj and v~,~, then the only nonzero components of zl, are 

1 1 1 1 
cxi, j = -, 

h cYi+ l,j=-9 h 
cx l.J+l = --7 h 

cy,,j= --. 
h 
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FIG. 2. (a) Nullvector flows on a 4 x 4 grid. (b) Nonzero components of a typical nullvector flow. 
(c) Components of A for a 4 x 4 grid, scaled by h. (d) Components of nullvectors for A on a 4 x 4 grid, 
scaled by h. 

A velocity vector of this form is discretely divergence free with zero net flow 
through every cell in the mesh, and with AP, = 6 These nullvectors are clearly all 
linearly independent, and there are d = (I- l)(J- 1) of them. Consequently, 

d=dim(Null[A]) = (I- l)(J- l), 

and we now have a basis for the nullspace 0: of A to work with. Note that for 
1 <I < d, the inner product of E, with any ii E V,, is 

(12) (C,, ii) = 
ui,j-“i,j+ 1 vi+I,j-vi,j 

Ay + Ax 
22! 

-ax a$ 
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ot the discrete curl, where the derivatives are evaluated at the grid intersection 
about which the nullvector E, is defined. The nullvectors {zl,};‘= 1 for A will be 
arranged in order as the columns of a (215- I- J) x d matrix C. 

For the sake of completeness, the matrix A and its nullvectors { 2,} ;‘= 1 for a 4 x 4 
uniform mesh are given in Figs. (2c)--(2d) as two arrays. The entries in each array 
have been labeled by cell and by velocity component within cell. On this mesh there 
are 3 unknown u velocities for each of the 4 mesh rows, and 4 unknown u velocities 
for each of the first 3 mesh rows, so that an element in 0: will have 24 components. 
The pressure on this mesh will have 16 components. The 16 x 24 matrix A multi- 
plied by the scale factor h = Ax = Ay is presented in Fig. 2c. The d = 9 scaled 
nullvectors for A are given in Fig. 2d. This basis is identical to the one given by 
Amit et al. [ 11, but can be obtained using local mass balance as above instead of 
network theory. 

The divergence constraint is defined for discrete velocity vectors with 
homogeneous boundary data, so there is no need to follow the general method of 
Section 2 and find a particular solution of the continuity equations ii,(t) E Vh to 
account for the boundary conditions of this problem. Since ti” E 0: at time t,, and 
since Gp(t) E Vh is not needed, there exists scalars {z;I}f= , such that 

d 

ii”= 1 zr;E,=CP, 

I= 1 
(13) 

where z”‘= (z;l, z;, . . . . ~7)‘. Equations for {zy };‘= 1 are obtained by substituting the 
expansion (13) into (9), and then taking the inner product between each of the 
expansion vectors {tI};i= 1 and Eq. (9). The inner products between the expansion 
vectors and Eq. (9) can be simultaneously computed by premultiplying (9) with the 
transpose of C to obtain 

1 
-~CTCz”+~CTna(Czfl+l)+~CTna(Cz”) 

++Tjj”+l +;CTATjY=O. 

But each column of C is a nullvector for A, so that 

C=A= = (AC)T = 0, 

and we may therefore write Eq. (14) as 

CTCZn+ ’ + $ CTna(Cz”+ ‘) = CTCz” - $ C=na(Cz”), 

(14) 

(15) 

where na is a nonlinear operator. Equation (15) for this algorithm corresponds to 
the general equation (7) with 8 = $. The unknown velocity iin+’ is found from 

581/84/l-15 
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Eq. (13) after the expansion coeflicients z”+l are obtained as the solution to the 
nonlinear system (15), using the known solution at time t,. The essential issue in 
developing a code from (15) is the solution of the nonlinear system. The usual 
methods (see Ortega and Rheinboldt [14]) require the Jacobian C’(ana/%)C, 
which has only 13 nonzero diagonals in this case. Any component of this matrix 
product can be written as the sum of 16 terms from &a/%, so the computational 
overhead for the calculation of this matrix product can be avoided. 

For many applications the nonlinear implicit equations (15) present too great a 
computational overhead to be practical. An alternative algorithm that is more 
efficient may be derived from the primitive variable Crank-Nicolson Adams- 
Bashforth scheme (8) with lagged nonlinear terms. The diffusion terms are treated 
implicitly to avoid the numerical stability restrictions from the viscous terms, and 
the convection terms are lagged to avoid the computational effort of solving a non- 
linear system at each time step. If we use the notation of (8), then this discretization 
of the primitive variable momentum equation (la) without the body force may be 
written as 

-n+l u -ii” 1 
At 

+$bv(i”)-cv(i”-‘)-df(P+‘)-df(i”)), 

+;(~Tjj-+l +A=jY)=O, 

where cv and df are discretizations of the convection and diffusion terms, respec- 
tively, and where AT is a matrix representation of the discrete gradient operator as 
above in- this section. If C is the matrix with nullvectors of A for its columns as 
above in this section, then the FDG method applied to (16) as the underlying 
primitive variable discretization will lead to 

PCZ” + l -+Tdf(Cz”+l) 

= C=Cz” + + CT df(Cz”) -y CT cv(Cz”) + $ CT cv(Cz”-I), (17) 

where cv is a nonlinear operator. There are various ways to efficiently deal with the 
linear problem posed by the resulting block pentadiagonal coefficient matrix for the 
implicit terms in (17), as in Roache and Ellis [17]. Amit et al. [l] use a frontal 
technique for solving analogous equations from the dual variable method. General 
techniques for solving banded or sparse linear systems are also available. 

As an estimate of comparitive efficiency for either of these schemes, the primitive 
variable formulation in space dimension s has O(M, + mi) = O((s + 1 )m,) unknown 
discrete velocity components and pressure values at each time step, while the FDG 
method has only O((s- l)m,) unknown coefficients at each time step. The reduc- 
tion in the number of variables is 0(2mi), or a factor of 4 in R2 and a factor of f 
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in R3. When storage requirements and operation counts are considered the reduc- 
tion in effort becomes even greater. Note that the FDG method produces algo- 
rithms in which the order of the number of unknowns is equal to that for stream- 
function or velocity potential algorithms with fourth-order governing equations in 
R2 or R3. It should also be noted that the algorithms in this form do not actually 
require the computation of the various matrix products with C and CT, sinck each 
of the terms in Eqs. (15) and (17) can be obtained as the weighted sum of at most 
16 scalars. The next section will show that the dual variable or finite difference 
Galerkin algorithms can actually be interpreted as streamfunction algorithms. This 
discovery resulted from trying to understand and simplify the product terms in the 
FDG algorithms as expressed in Eqs. ( 15) or (17). 

4. THE DISCRETE STREAMFUNCTION INTERPRETATION 

Even though the algorithm development using the FDG method is formally com- 
plete, it is useful and informative to consider (15) and (17) in greater detail. As 
above, let us write na(ti) = cv(ti) - df(ti), where cv and df are the discrete represen- 
tations of the convection and diffusion terms. It will be convenient to introduce an 
indexing for the expansion coefficients {z;1};‘= i as a 2-dimensional array 

(ZTjlti: 1 <.i<z-- 1,l <j<,Z- 1}, 

where zyj is the i + (j- l)(Z- 1) component of zm. This is a natural ordering of the 
expansion coefficients, since it associates the (i, j) coefficient with the nullvector for 
A that represents a flow through the four cells around the intersection of grid lines 
in the upper right-hand corner of the (i, j) cell. Both indexings for the expansion 
coefficients will be implicitly used in the next three equations, with the left-hand 
sides of the equations using the single subscript I, and the right-hand sides using the 
double subscripts {i, j}. The premultiplication of the discrete momentum equations 
by CT can easily be analysed locally throughout the grid, or by rows of the 
resulting product. If a row of CT corresponds to the null vector with coefficient zb j, 
then the corresponding component equation of the premultiplied momentum 
equations is just the weighted sum of the discrete momentum equations for the 
primitive velocity components ui, j, ui, j+, , ui, j, and ui+ i, j. The discrete velocity 
components can now be replaced by the appropriate components of Cz”+ ‘, Cz”, 
and Cz”- I, as given by (21ak(21b) below, and the details of transforming Eqs. (15) 
and (17) into Eqs. (18) and (19) become apparant. These calculations are 
straightforward but messy algebra and are included only in summary because of 
their length. With these conventions, and at time t,, 

CTCz” = La(z”), 
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where La is the conventional Spoint centered difference approximation to the 
Laplacian, 

CT df(CP) = & Bi(z”), 

where Bi is the conventional 13-point centered difference approximation to the 
biharmonic operator, and 

CT cv(Cz”) = dx(6Jzm) La(z”)) - 6J6Jzm) La(z”)), 

where 6, and 6, are the conventional centered difference operators 

and ~y(zm)i,j=zYj+ l-‘Tj-l. 
DAY 

The actual equation for CT cv(Cz”) is given in an Appendix. With this notation, we 
may write (15) as 

La(z”+‘)-&Bi(z”+‘) 

+$ [6x(6y(z”+1) La(z”+‘))-6,(6,(z”+‘) La(z”+‘))] 

= La(?) + 2 Re -&- Bi(zn) - $ [JX(6Jz”) La(z”)) - J,,(bJz”) La(z”))], (18) 

and we may write (17) as 

La(z”+l)-$Bi(z”+r) 

=La(z”)+$ Bi(z”) -y [6J6,,(z”) La(z”)) - dY(bX(z”) La(z”))] 

+; [s,(s,(zn-’ ) La(z”-‘)) -6JS,(z”-‘) La(z”-‘))I. (19) 

Let us take zm to be a discrete approximation at time t, of a scalar function $ 
defined on 9, where the discretization zm is defined at the (I- l)(.Z- 1) points of 
intersection of the grid lines between the mesh cells in the staggered grid. Note that 
the approximation 

is defined at the same discrete times as the primitive variable solution, but that it 
is defined on a different spatial grid. Now notice that the linear terms in (18) and 
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(19) represent a conventional centered space approximation for the linear terms in 
the fourth-order stream function equation 

aA* 1 w  a* a* a* ---&*++-A---A---. 
at ax ay ay ax (20) 

Taylor series expansions of these two algorithms show that they are in fact second- 
order centered space discretizations of the fourth-order streamfunction equation 
(20). The usual streamfunction boundary conditions for this problem are + = 0 on 
the entire boundary X& and a$/atI = 0 on the walls while a+/aR = 1 on the lid. 
These boundary conditions are consistent with the modification of algorithms (18) 
or (19) in cells near the boundary that results from using conventional primitive 
variable exterior cell velocity boundary treatments. Consider also the recovery of 
the velocity components in (13). From Fig. 2a we see that u, j on the right-hand 
face of the (i, j) cell has flow contributions only from the nullvectors E, for 
Z=i+(j-1)(1-l) when j<J-2, and for Z=i+(j-2)(1-l) when 2<j, with 

Ui,j=’ (Zi,j-Z,j-l)z-. 
a* 

AY ay 

Similarly, ui,j on the top face of the cell is 

a* ui,j=~(zi&I,j-zi,j)~ -- 
aZ @lb) 

If z”’ is interpreted as a discrete vector field perpendicular to the (x, y) plane, then 
the entire discrete velocity field is ti” = Czm, so that premultiplication by C may be 
interpreted as taking the discrete curl of zm. Recall that a discretization was initially 
formulated in terms of the primitive variables and then premultiplied by CT in (15) 
or (17), and by (12) this may be interpreted as taking the discrete curl of the 
discrete momentum equation, where the resulting product only has nonzero 
components perpendicular to the (x, y) plane. We may therefore interpret zm as 
defining a discrete streamfunction at time t, on the (I- 1) x (J- 1) points of inter- 
section of the grid lines between the mesh cells in the staggered grid. For the 
primitive variable discretization and nullvectors of A that we have chosen, the dis- 
crete manipulations of the FDG method are the exact analog of the manipulations 
of the continuum Navier-Stokes equations that are used to derive the fourth-order 
streamfunction equation. 

When a staggered grid is used, the resulting staggered velocity components must 
be interpolated in order to obtain all of the velocity components at the same grid 
point. Let us average the x velocity components in the y direction and the y 
velocity components in the x direction, with 
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for l<i<Z-1 and l<j<J--1 at time t,. For the usual centered difference 
operators defined above, 

so that in this sense the interpolated solution is exactly divergence free throughout 
the interior mesh and at every time t,. The interpolated velocity solution 
( Uyji, Vyj) may also be obtained directly from the discrete streamfunction solution 
as 

and 

where the derivatives are evaluated at the intersection of the grid lines at the upper 
right corner of the (i, j) cell. We can formulate a primitive variable discretization 
using the advantages for mass balance of a staggered grid with velocity components 
defined on cell faces, then use the FDG method to obtain a related streamfunction 
algorithm that automatically creates a streamfunction boundary treatment from the 
primitive variable boundary treatment, and finally recover a discretely divergence 
free velocity solution with all components defined at every grid point. Both types 
of mesh may be used where they are convenient, and a pressure solution never has 
to be considered unless it is desired. 

There are two possible views of the FDG and dual variable methods. If attention 
is focused on the primitive variable discretization, then these methods may be 
viewed as variable reduction techniques that can lead to a more efficient solution 
of the primitive variable algorithm equations. If attention is focused on interpreting 
the application of the FDG and dual variable methods, then for 2-dimensional 
problems these methods may be viewed as techniques for developing streamfunction 
algorithms that are based upon the underlying primitive variable discretization and 
its properties. If appropriate choices are made in the discretization, then the FDG 
and dual variable methods will produce an algorithm for the fourth-order stream- 
function equation which will give a discrete primitive variable solution with charac- 
teristics inherent in the primitive variable discretization. In their discussion of the 
FDG method for steady problems Stephens et al. [19] suggested that a discrete 
streamfunction interpretation is possible for the coefficient vector z. Amit et al. [ 1 ] 
point out that their dual variable algorithm does not lead to a discretization of the 
fourth-order streamfunction equation (20), but that (21a)-(21b) do hold for their 
method, so their dual variables may be intepreted as a discrete streamfunction. The 
streamfunction interpretation of the coefficient vectors depends upon the choice of 
the basis vectors for the nullspace of A, and the choice of the primitive variable 
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discretization. If a choice of the basis vectors for 0: is made so that (21a)-(21b) 
does not apply, then the discrete streamfunction interpretation of the expansion 
coefficients zm would be unreasonable. If a basis for the nullspace of the discrete 
divergence operator is chosen so that (21a)-(21b) does hold, then the streamfunc- 
tion interpretation is reasonable even if the algorithm for z”+ ’ is not recognizable 
as a discretization of the streamfunction equation (20). There is a nonsingular 
transformation between any two bases for the nullspace of the discrete divergence 
operator, so that the expansion coefficients with respect to any basis will uniquely 
determine the expansion coefficients with respect to any other basis. In this sense, 
an expansion coefficient solution with respect to any basis may be interpreted as a 
discrete streamfunction. For 3-dimensional problems the FDG and dual variable 
methods are related to the formulation of algorithms for the velocity potential. 

5. SOLVING GENERAL FLOW PROBLEMS 

The analysis of the divergence constraint is the crucial issue for applying the 
FDG method to general problems, and results in the decomposition of the discrete 
solution vector iP at time t, as the sum of two discretely divergence free vectors 
iv=tiirpm+q, with %$’ assuming any boundary values imposed on the solution, 
and with ti;; equal to zero where boundary values are prescribed. If A is the matrix 
representation of the discrete divergence operator for some choice of grid and 
primitive variable discretization, then the issues are to find a basis for the nullspace 
0: =Null[A] of A, and to find fi,, such that A+P =& where the nonzero com- 
ponents of 6 are from the prescribed boundary data. The basis for Null[A] must 
be found only once, but the particular solution tiP might need to be found at every 
time step if the boundary data changes with time. The continuous solution at any 
time must satisfy 

I 
V,udv=O. 

n 
(22) 

If we interpret the separate continuity constraint equations as applying to each grid 
cell or at each grid point, and if an appropriate conservative discretization is used, 
then the discrete analog of (22) is that the weighted sum over the grid of the 
separate continuity constraint equations is zero. For problems in which the discrete 
boundary velocities are all specified, at least the last row of A is a linear combina- 
tion of the previous rows, so that A is not of full row rank, and the prescribed 
boundary data must be consistent in the sense that the last component of b is the 
same linear combination of the previous components. The consistency of the 
boundary data is a discrete analog of (le). Amit et al. [ 1 ] have proven that for 
general flow problems and grids A has full row rank if the discrete boundary 
velocities are not prescribed on at least part of the boundary. The problems of 
finding a particular solution and a basis for Null[A] when A has full row rank also 
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occurs in structural analysis, and four techniques based on the LU and QR decom- 
positions have been presented in Kaneko, Lawo, and Thierauf [lo] for the solution 
of these problems. These techniques are independent from the dimension of the 
problem, from the grid used for the discretization, and from the finite difference 
approximations that are used. For a general problem the discrete continuity equa- 
tion may be written as 

Aw=b, (23) 

where A is an Mx N matrix, w  is Nx 1, and b is Mx 1. We will assume that MC N. 
If A is not of full row rank, then Rank[A] = M - 6, so that 

d=dim(Null[A])=N-M+6. 

Since there are 6 dependent equations in the linear constraint system, there is an 
M x M permutation matrix P, and an M x (M - 6) matrix R such that 

A=P = PRAl and =PRbl, 

where A, is (M-6) x N, A2 is 6 x N, bl is (M-6) x 1, b2 is 6 x 1, and where A, 
has full row rank. The methods of Kaneko et al. [lo] may now be used on A,, and 
the results can be adapted to A. The dual variable method (see Amit et al. [l] and 
Hall [8]) uses network theory algorithms to solve these problems. 

A basis for the nullspace of A and a particular solution to (23) can both be found 
even for quite complicated problems by the methods of Section 3 that are based on 
mass balance considerations. We will present simple examples of how to deal with 
two specific problem types using a staggered grid. Figure 3(a) presents a 4 x 4 
syaggered grid for a typical throughflow computation. We will use the same 
indexing as in Section 3. The u velocity for i = 0 and j = 1,2, 3,4 are specified as the 
given inflow, the u velocity for i= 1,2, 3,4 and j= 1, 2, 3,4, and the u velocity for 
i = 1, 2, 3,4 and j = 1, 2, 3 are all undetermined. The u velocity for j = 0 or j = 4 and 
i= 1, 2, 3,4 are all set to 0 as wall velocities. There are 28 unknown velocities and 
16 unknown pressure values. The discrete divergence matrix A is 16 x 28, and hA 
is given in Fig. 3(b), where h = Ax = Ay. In this case the data vector 5 from the 
prescribed inflow has transpose 

where (u. i}4= I are velocity components that are normal to the inflow boundary. 
The equations A%, = b add up to 

1 jil u4, j = k Cl uo,j or i ( i %I- jjl, W) = ‘9 
,=l 
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flow direction -t+ 
a prescribed inflow from upstream 

a nullvector on the interior grid 

a nullveetor at the outflow boundary 

b 

FIG. 3. (a) A 4x4 grid for a throughflow problem. (b) Components of A for a 4 x4 grid with 

throughflow, scaled by h. 

and this is just the discrete mass balance equation for flow in and out of the entire 
computational domain. In this case A has full row rank (see Amit et al. [ 1 ] ), and 
the nullspace 0: of A has dimension 

d= dim(Null[A]) = 28 - 16 = 12. 

Nine linearly independent nullvectors for A can be found just as in Section 3, and 
are illustrated in Fig. 3(a) as the flows around the grid intersections for 1 < i < 3 
and 1 &j< 3. The remaining three nullvectors are illustrated in Fig. 3(a) as the 
semicircular flows in and out of the downstream boundary around the grid inter- 
sections for i = 4 and 1~ j < 3. These last three nullvectors multiplied by h have 
transposes 

hE%, = (0, 0, 0, 0, 0, 0, 1, - 1, 0, 0, 0, 0, 0, 0, - LO, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O), 

he;, = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, - 1, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, O), 

he& = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, - 1, 0, 0, 0, - 1). 

One particular solution is easy to find, with the inflow being washed straight 
downstream and out, with transpose scaled by h 

hii; = (a, 0, a, 0, a, 0, a, 0, b, 0, b, 0, b, 0, b, 0, c, 0, c, 0, c, 0, c, 0, d, d, d, d), 
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where a=~,,,, b=uo,z,c=uo,3, and d=u,,,. Another particular solution can be 
obtained by introducing a flow along the inflow boundary cell layer and up to the 
upper wall, then down the wall surface, and out the upper outflow boundary cell. 
If a, b, c, and d are the prescribed flows across the inflow boundary, then this other 
particular scaled solution is 

hq = (0, a, 0, 0, 0, 0, 0, 0, 0, a 

+ b, 0, 0, 0, 0, 0, 0, 0, a + b + c, 0, 0, 0, 0, 0, 0, e, e, e, e), 

where e = a + b + c + d. The particular solutions merely state that what goes into 
the grid must come out at each time step or that mass must be discretely globally 
conserved. Independently from the choice of nullvectors and a particular solution, 
the momentum equation algorithm for interior cells must be modified near the 
boundary to incorporate whatever boundary treatments are being used. After 
discrete equations that incorporate boundary treatments have been formulated for 
each of the unknown velocity components on the grid, and with the use of a 
particular solution such as those above, the FDG method can be employed to 
expand the solution with respect to the nullvectors obtained above and to derive 
equations for the expansion coefficients as in (15) and (17) from Section 3. 

Figure 4 illustrates a portion of a MAC grid for a problem with an obstacle. The 
illustrated flow E around the obstacle is discretely divergence free, and must be 
included as an independent vector in the basis for the nullspace of the matrix 
representation A of the discrete divergence operator. Let us assume that this grid 
is a portion of the Ix J grid for a driven cavity problem which is otherwise the 
same as in Section 3, and with the same discretization as in Section 3. With this 
assumption there are (I- 1) J+ Z(J- 1) - 4 unknown velocity components, there 
are ZJ- 1 unknown pressure values, and there are (I- l)(J- 1) -4 discretely 
divergence free vectors that are defined around cell corners as in Section 3. 
The matrix A is (ZJ- 1)x (215-Z- J-4) with row rank ZJ-2, so that 
d= dim(null[A]) = (I- l)(J- 1) - 3. The additional nullvector e will complete the 
basis of 0: for this problem. Note that there are only d - 1 components for the 
discrete streamfunction zm as defined above in Section 3. The extra nullvector E 
will have an expansion coefficient which may be considered as a streamfunction 

a nullvector on the interior grid 

- -----___ a nullvector flow around the obstacle 

FIG. 4. A 4 x 4 grid segment for flow with an obstacle. 
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value on the surface of the obstacle. It is possible to solve this problem without 
introducing the nullvector E and its expansion coefficient into the FDG method. If 
1+9~ is the known value of $ on any bounding surface, and if $S is the unknown 
value of II/ on the surface of the embedded obstacle, then 

tj&,=j udy-udx=O, 
Y 

where the line integral is along any path y through the flow domain from the boun- 
ding surface where I,$~ is known to the embedded obstacle (as in Batchelor [2]). 
The discrete analog of this can be used to calculate the value of the discrete stream- 
function on the surface of the embedded obstacle, and this value would then be the 
expansion coefficient for the extra nullvector iZ. The FDG method may now proceed 
with the expansion and equation derivation with just the usual nullvectors for A in 
C as above in Section 3. The advantage of not using the extra nullvector S in the 
FDG process is that the bandwidth and general from of the equations derived for 
the expansion coefficients will not be disturbed by the introduction of an expansion 
vector that flows through relatively many computational cells. More general 
problems with obstacles embedded in the flow can be handled in a similar fashion. 

6. NUMERICAL EXAMPLES 

In this section we will present the results of numerical calculations obtained with 
the Crank-Nicolson Adams-Bashforth algorithm from Eq. (17). The coefficient 
matrix for the linear terms at time t n+l is constant in time and was factored before 
time stepping with a LINPACK banded LU decomposition subroutine. A LIN- 
PACK banded backward solution subroutine was used to solve the linear system 
for each time step. The reported calculations are for the asymptotic steady state 
results in a square driven cavity at Re =400, 1000, and 3200, and for the time 
evolution or vortex dynamics at Re = 1000 in a square driven cavity and in a 
rectangular driven cavity with aspect ratio 2. The cavity lid is always the upper 
surface, the lid is always impulsively started, and the lid always moves from the left 
to the right. The calculations in the square driven cavity are all with At = 0.01 on 
a grid with 64 by 64 cells, and the calculations in the rectangular driven cavity are 
with At = 0.025 on a grid with 40 by 80 cells. The criterion for convergence to 
steady state was generally taken to be 

where llfill i is the L, norm obtained as the sum of the absolute value of all velocity 
components on the interior grid multiplied by the cell size. The only exception was 



230 GOODRICH AND SOH 

the lid velocity u. 
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FIG. 5. Asymptotic steady state flow, 64 x 64 grid, streamfunction contours with directional vectors, 
u at x = 0.5, and u at y  = 0.5: (ak(c) Re = 400, t = 46.66; (dt(f) Re = 1000, t = 99.94; (gt(i) Re = 3200, 
t = 250.00. 
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the lid velocity u. 
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for the square cavity computation at Re = 3200, where convergence was taken at 
t = 250, with 

))iin+I-iinJJ1 
Il~n+lllI 

< 2.74 x 10-7. 

The reported computational results for the asymptotic steady state cases are com- 
pared with the published data in Ghia, Ghia, and Shin [S], while the reported 
computational results for the time evolution cases are compared with the vortex 
dynamics published in Gustafsen and Halasi [6,7]. 

The asymptotic results for the square driven cavity are given in Figs. 5(a)-(c) 
for Re =400 at t =46.63, in Figs. 5(d)-(f) for Re = 1000 at t = 99.94, and in 
Figs, 5(g)-(i) for Re = 3200 at t = 250. Figures 5(a), (d), and (g) give streamfunc- 
tion contours overlayed with directional vector plots for the velocity fields. These 
three plots all agree qualitatively with published results and show the primary cen- 
tral vortex, secondary vortices in both of the two lower corners, and a secondary 
vortex in the upper left corner for Re = 3200. The 64 by 64 grid resolution is too 
coarse for the resolution of any additional vortices in the corner vortex cascades. 
Figures 5(b), (e), and (h) give the profile of the x velocity component u as a func- 
tion of y for x = 0.5, and Figures 5(c), (f), and (i) give the profile of the y velocity 
component u as a function of x for y = 0.5. The results from Ghia et cd. [S] for a 
grid with 128 by 128 cells are overlayed on these plots. The local extremes for the 
x velocity component u near the bottom wall differ from the results in Ghia et al. 
[S] by 2.2% at Re = 400, by 4.6% et Re = 1000, and by 12.5% at Re = 3200. The 
local extremes for the y velocity component u near the downstream wall on the 
right differ from the results in Ghia et al. [5] by 1.6 % at Re = 400, by 3.9 % at 
Re = 1000, and by 11.9% at Re = 3200. The velocity profiles are in excellent agree- 
ment at Re = 400, they are in very good agreement at Re = 1000, and they are in 
reasonable agreement at Re = 3200. The local extremes for the streamfunction in 
the primary vortex are I+Q = -0.1198 at Re = 400, Ic/ = -0.11359 at Re = 1000, and 
$ = -0.10646 at Re = 3200. These differ from the published results in Ghia et al. 
[S] by 1.7 % at Re = 400, by 3.7 % at Re = 1000, and by 11.6 % at Re = 3200. The 
local extremes for the streamfunction in the lower downstream secondary vortex are 
I/J =0.0005749 at Re = 400, rl/ = 0.001892 at Re = 1000, and $ =0.003637 at 
Re = 3200. These differ from the published results in Ghia et al. [S] by 10.5 % at 
Re = 400, by 8.1% at Re = 1000, and by 15.8 % at Re = 3200. The strengths of the 
primary vortices agree with the published data as well as the local velocity 
extremes, while the strengths of the main secondary vortices are in only fair agree- 
ment with the published data from finer grids. The overall agreement with the 
published data in Ghia et al. [S] is excellent at Re = 400, very good at Re = 1000, 
and reasonable at Re = 3200. The computations for Re = 3200 were stopped with a 
relative L, norm change in the flow field that is five times larger than for Re = 400 
and Re = 1000. This relatively premature end of the calculations for Re = 3200 will 
have made a contribution to the error for the asymptotic results in this case. 
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FIG. 6-Continued 

The time evolution of the driven cavity for Re = 1000 with a 64 by 64 grid is 
presented in Figs. 6(a)-(f). These figures show streamfunction contour plots over- 
layed with directional vectors from the velocity field. The interesting feature of these 
figures is the development in time of the vortex dynamics in the cavity. In Fig. 6(a) 
at t = 1.0 the outer streamfunction contour has begun to lift away from the 
downstream wall close to its top near the moving lid. By t = 4.0 in Fig. 6(b) the 
negative streamfunction contours around the primary vortex are very distorted by 
the development of a relatively weak positive streamfunction peak on and around 
a small recirculation bubble that is located halfway down the right wall. Note that 
the flow separates above this small recirculation and then reattaches below it, while 
there is a weaker positive streamfunction peak on and around the small and 
entirely distinct recirculation starting in the lower right corner. By t = 5.8 in 
Fig. 6(c) the two recirculating vortices have joined, with separation above the recir- 
culation on the right wall and reattachment on the bottom wall. Note that the 
positive streamfunction peak is still above the corner. At t = 8.0 in Fig. 6(d) the 
recirculation on the wall has moved almost entirely into the corner, although it is 
still underdeveloped along the bottom wall. Note that a distinct recirculation has 
started in the lower left corner. At t = 16.0 in Fig. 6(e) the general form of the 
primary vortex and the two secondary vortices in the lower corners has been 
established. The development from t = 16.0 to t = 32.0 in Fig. 6(f) and the 
asymptotic state at t = 99.94 in Fig. 5(d) is just a strengthening of the vortices that 
are already present by t = 16.0. In the driven cavity there is no bubble type 
recirculation on the right-hand wall for Re =400, but the general pattern at 
Re = 1000 and higher is for the secondary vortex in the lower right corner to 
develop from a separate eddy on the downstream wall that coalesces with a weaker 
corner recirculation. The bubble type recirculation on the right hand wall begins to 
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appear between t = 3.6 and 3.8 for Re = 1000, and between t = 2.0 and t = 3.0 for 
Re = 3200. As Reynolds number increases, the distinct bubble recirculation on the 
right-hand wall begins earlier and becomes stronger before it coalesces with the 
corner recirculation on the lower right. The secondary vortices in the lower corners 
of the square driven cavity begin to appear at about t = 1.5 on both sides at 
Re = 400, at about t = 3.2 on the right side and t = 7.2 on the left side at Re = 1000, 
and at about t = 6.5 on the right side and t = 11.5 on the left side at Re = 3200. The 
occurrance of the secondary vortices in the lower corners is delayed by the develop- 
ment of the bubble recirculation on the right-hand wall, with a greater delay for the 
recirculation in the lower left-hand corner. The recirculation in the lower right 
corner inherits much of its initial strength from the recirculation bubble that 
descends along the wall to join with the corner recirculation. This pattern is 
consistent with the vortex dynamics for deeper cavity flows that have been reported 
by Gustafson and Halasi [6, 7 J. The appearance of the recirculating bubble in the 
middle of the wall on the right for Re = 1000 in the early stage of flow development 
for the square driven cavity has been reproduced at about t =4.0 using the 
nonlinear Crank-Nicolson method of Soh and Goodrich [ 181. 

The time evolution of the driven cavity with aspect ratio 2 for Re = 1000 with a 
grid having 40 by 80 cells is presented in Figs. 7(a)-(j). This problem with the same 
grid resolution has previously been presented in Gustafson and Halasi [7]. 
Figures 7(a)-(j) show streamfunction contour plots overlayed with directional 
vectors from the velocity field. The deeper cavity gives rise to more interesting 
dynamics, and the streamfunction contours with directional vector overlays show 
the dramatic extent of the effects due to the secondary vortex that begins to develop 
along the downstream wall. Figure 7(a) shows a nearly symmetric flow at t = 0.1. 
Figure 7(b) shows the early strengthening of the primary vortex and the early 
distortion of its outer streamfunction contours along the downstream wall near the 
lid. Figure 7(c)-(d) show the presence of a recirculating vortex on the downstream 
wall with the development of a relatively weak positive streamfunction peak. From 
t = 6.0 to t = 8.0 in Fig. 7(e) there is the development of two new and distinct 
recirculating vortices in the lower corners. By t = 10.0 in Fig. 7(f) all three of the 
secondary recirculating vortices have joined together in one massive recirculating 
region along the boundary from the center of the downstream wall down to and 
along the entire lower wall. By t = 12.0 in Fig. 7(g) there is a dramatic breakout of 
this secondary vortex from the lower wall and deeply into the lower half of the 
cavity. By t = 16.0 in Fig. 7(h) this secondary vortex has developed to the point 
where it fills the lower half of the cavity. By t = 28.0 in Figs. 7(i) there are tertiary 
vortices developing in both of the lower corners, and the general pattern for the 
asymptotic flow field is present. From this point on the development of the flow field 
in the cavity merely stengthens the vortices that are present until the asymptotic 
result is reached by t = 165.675 in Fig. 7(j). These vortex dynamics are in agreement 
with those observed by Gustafson and Halasi [7]. 

The computational results that we have reported are in very good agreement 
with the published results for the problems that have been treated, within the 
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by back substitution at each time step. This solver requires storage on the order of 
the cube of the number of grid cells along the cavity side. The memory constraint 
of the system that was used for the calculation of the reported numerical results 
limits the grid resolution to a 64 by 64 grid with this solver. The algorithm based 
on (17) and (19) is effective, but the ancillary solver needs to be improved in order 
to efficiently obtain line mesh resolutions. A new solution procedure is being 
implemented with algorithm (17) and (19), but with a much more efficient solver 
for the associated linear equation problem at each time step. Results with higher 
resolution and at higher Reynolds numbers will be presented with the refined 
algorithm. 

7. SUMMARY 

The FDG method was extended to time dependent incompressible Navier-Stokes 
equations with a continuous time formulation that is valid in two or three space 
dimensions. A detailed example of algorithm development was given for the driven 
cavity using a staggered grid and central differencing for the primitive variable 
scheme. It was shown how mass balance in the primitive variable formulation can 
be used to solve the essential problems associated with applying the FDG method 
for general problems in two dimensions. The use of the FDG method with this 
underlying discretization in two dimensions was shown to be the discrete analog of 
the continuum manipulations that lead to the fourth-order streamfunction equa- 
tion. This method of algorithm development can use a staggered grid and mass 
balance for a primitive variable formulation, with the FDG method leading to a 
reduction in the number of variables, while the discrete streamfunction interpreta- 
tion of the derived expansion variables gives a primitive variable solution that is 
discretely divergence free and that has all velocity components defined at the same 
point. Asymptotic and time evolution results obtained with a Crank-Nicolson 
Adams-Bashforth algorithm for Re = 400, 1000, and 3200 were shown to be in 
good agreement with published data. The dramatic evolution of secondary vortices 
from bubble recirculations starting on the wall was shown for Re = 1000. Computa- 
tional experience was reported for Re up to 100,000 with mesh Reynolds number 
up to 5000 and without any spatial oscillations, even though central differencing 
was used for all space derivatives. 

APPENDIX: THE NONLINEAR STREAMFUNCTION TERMS 

To see the detailed structure of the convection terms in (18) and (19), we will 
look more closely at CT cv(CV). It will be convenient to reindex the components 
of 2”’ at time t, by the cells with which they are associated in the natural mesh 
order as discussed above. Let zyj be the i+ (j- 1)(1- 1) component of z”‘, for 
1 d i < I- 1 and 1 <j< J- 1. If h = l/Ax = l/dy, then with these conventions, we 
may write the convection terms at time t, as 
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